SLA 750 Stereolithography Additive Manufacturing Solution for the Factory Floor

From the leading innovator in stereolithography, a 3D printing solution delivering manufacturing-level speed and throughput.
Integrated AM Factory Ecosystem – A Full Workflow Solution

Optimized for manufacturers who want to take the next step in integrating additive manufacturing into their factory-floor ecosystems

The SLA 750 by 3D Systems answers the demand for cost effective 3D printed production parts with unprecedented levels of throughput and reliability. This combined with full factory integration software allows users to control every aspect of their additive production lines.

Integrated Factory Floor Ecosystem
SLA 750 and SLA 750 Dual 3D Printers

World's First Synchronous Dual-Laser SLA 3D Printer: Large Production Parts at the Highest Speeds

From the original inventor of SLA and the innovation leader in production-grade photopolymer technology, 3D Systems introduces the industry’s fastest SLA 3D printers: the SLA 750 and the SLA 750 Dual.

The SLA 750 Dual is the world’s first synchronous dual-laser SLA printer delivering up to twice the speed and triple the throughput of current SLA printers, using dual imaging systems together with a proprietary scan algorithm, *Hyper-Scan™ vector technology*, developed for efficient, high-quality production manufacturing.

The SLA 750 3D printer delivers up to 30% faster print speeds than comparable SLA 3D printers and is fully upgradeable to the SLA 750 Dual model.

More Production Advantages Than Ever Before

Both the SLA750 and SLA750 Dual were conceived from the ground up to deliver an industry leading combination of print size, build times, and mechanical properties. They were designed specifically to speed up production times and improve reliability through the use of self-calibrating hardware and advanced software functionality. These features allow users to drastically improve throughput while delivering superior parts to their customers.
Optimized Laser Scanning Technology for Additive Manufacturing

Unlike conventional SLA 3D printers that use off-the-shelf scanning technology, the SLA 750 and SLA 750 Dual use a proprietary scanning algorithm developed for the unique needs of production additive manufacturing. Hyper-Scan™ vector technology optimizes key speed and productivity elements to answer the needs of high demand production manufacturing environments.

Comparable to Injection Molded Parts

The SLA 750 and SLA 750 Dual deliver superior surface quality and accuracy at every point across large builds.

Fleet Automation Readiness with 24/7 Lights-Out Operation

The SLA 750 and SLA 750 Dual come with downstream automation readiness and robot-compatibility for 24/7 lights-out operation with fully automatic printer turnover, including job off-loading, washing, and onboarding.

SLA 750 SYSTEM ADVANTAGES

- High laser power (4-watt laser)
- Dynamic beam range with 2 beam sizes per print layer
- Choice of single or dual laser scanning
- New all-metal chassis design for heavy-duty workloads, improved ergonomics and clean-ability
- Self-calibrating, dual-rail recoater
- 15% larger build volume and smaller hardware footprint (compared to previous models)
- Best-in-class production-grade resin materials
- All new UX and UI with full visibility and user-friendly experience
- Remote monitoring and control
- Removable vat and in-vat auto material mixing
- Field upgradeable from single-laser SLA 750 to dual-laser SLA 750 Dual
- Automation ready for factory-level ecosystem integration

SLA 750 PART ADVANTAGES

- Sharpest part corners
- Superior side wall detail
- Smallest extruded and embossed feature detail
- Thinnest features
- Smoothest layer lines on angled faces
- No ‘orange peel’ effect on side walls
- Highest incremental fidelity
<table>
<thead>
<tr>
<th>Technical Specifications</th>
<th>SLA 750</th>
<th>SLA 750 Dual</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D Printer Size Crated</td>
<td>1887 x 1887 x 2515 mm (73.5 x 73.5 x 99 in)</td>
<td></td>
</tr>
<tr>
<td>3D Printer Size Uncrated</td>
<td>1370 x 1539 x 2255 mm (54 x 61 x 89 in)</td>
<td></td>
</tr>
<tr>
<td>3D Printer Weight Crated (not including MDM)</td>
<td>998 kg (2200 lbs)</td>
<td>1044 kg (2300 lbs)</td>
</tr>
<tr>
<td>3D Printer Weight Uncrated (not including MDM)</td>
<td>771 kg (1700 lbs)</td>
<td>817 kg (1800 lbs)</td>
</tr>
<tr>
<td>Interchangeable Material Deliverable Modules (MDMs)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>MDM Size Crated</td>
<td>1676 x 1194 x 1146 mm (66 x 47 x 45 in)</td>
<td></td>
</tr>
<tr>
<td>MDM Size Uncrated</td>
<td>968 x 1296 x 910 mm (31 x 51 x 36 in)</td>
<td></td>
</tr>
<tr>
<td>MDM Weight Crated (not including material)</td>
<td>227 kg (500 lbs)</td>
<td></td>
</tr>
<tr>
<td>MDM Weight Uncrated (not including material)</td>
<td>136 kg (300 lbs)</td>
<td></td>
</tr>
<tr>
<td>Electrical Requirements</td>
<td>200-240 VAC, 1-Ph, 50/60Hz, 24A</td>
<td>200-240 VAC, 1-Ph, 50/60Hz, 30A</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>18°C to 28°C</td>
<td></td>
</tr>
<tr>
<td>Max Part Size - Full</td>
<td>750 x 750 x 550 mm (29.5 x 29.5 x 21.65 in)</td>
<td></td>
</tr>
<tr>
<td>Max Part Size - Short</td>
<td>750 x 750 x 50 mm (29.5 x 29.5 x 1.97 in)</td>
<td></td>
</tr>
<tr>
<td>Max Build Volume - Full</td>
<td>558 liters (147.4 U.S. gal)</td>
<td></td>
</tr>
<tr>
<td>Max Build Volume - Short</td>
<td>176 liters (46.5 U.S. gal)</td>
<td></td>
</tr>
<tr>
<td>Max Part Weight</td>
<td>86 kg (190 lbs)</td>
<td></td>
</tr>
<tr>
<td>Minimum Feature Size</td>
<td>0.2 mm (0.8 in)</td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td>Dimensions >34 mm (1.34 inch): ± 0.15% of feature size*</td>
<td>Dimensions <34 mm (1.34 inch): ± 0.051 mm (0.002 inch)*</td>
</tr>
<tr>
<td>Hyper-Scan™ Vector Technology</td>
<td>Proprietary scan algorithm developed especially for efficient, high-quality production</td>
<td></td>
</tr>
<tr>
<td>Laser</td>
<td>4 watts, 355 nm, Solid-state frequency tripled Nd: YVO4</td>
<td></td>
</tr>
<tr>
<td>Laser Power in Printing (watts per laser)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Dynamically Focusing Beam Size</td>
<td>125 - 1000 μm (0.005 - 0.040 in)</td>
<td></td>
</tr>
<tr>
<td>SLA Printer Controller Software OS</td>
<td>Windows 10 LTSC 1809</td>
<td></td>
</tr>
<tr>
<td>SLA Printer Controller Software Network Compatibility</td>
<td>Class A Ethernet interface, interfaces with 10/100/1000 Gigabit Ethernet network</td>
<td>Standard USB wireless adapter compatible</td>
</tr>
<tr>
<td>Certifications</td>
<td>NRTL, SCC, CE, UKCA, KC & RCM</td>
<td></td>
</tr>
<tr>
<td>Language Support</td>
<td>English, German, French, Italian, Spanish, Portuguese, Japanese, Korean, Simplified Chinese</td>
<td></td>
</tr>
<tr>
<td>Accessories</td>
<td>Transfer Cart</td>
<td>In-Vat Mixer</td>
</tr>
</tbody>
</table>

* Accuracy may vary depending on build parameters, part geometry and size, part orientation, and post-processing methods.
PostCure™ 1050
High Speed, High Volume Post-Processing

Industrial Scale Post-Processing System for High Yield, Repeatable, and Large Parts
PostCure 1050 is an industrial-scale post-processing system offering high volume, high-speed drying and curing for batch jobs and large-scale, production-grade resin parts up to 1050 x 800 x 625 mm.

Consistent Cure Volume. Repeatable Part Results. Minimal Expertise.
Production-ready features including: long-life LED light sources, automatic detection and alert of light failures, and a light output calibration routine for more predictable and consistent part and job outcomes.

Consistent 360° light-uniformity, including on down-facing part surfaces, means more parts cured in less time with no need for part flipping or manual intervention.

Featuring optimized light wavelengths, a separately configurable UV intensity, and actively cooled LEDs with separately adjustable heating, you can now ensure optimal part curing without incurring unwanted thermally-induced warp in your printed parts.

Better Predict and Manage Your Capital Equipment Investment
PostCure 1050 is compatible with all 3D Systems photopolymer 3D printers and suitable for current and future 3D Systems material innovations, allowing you to eliminate additional or redundant post-processing investments.

You can now deliver repeatable part performance, consistent part quality, and higher yield from a more automated, cost-effective, and high throughput process – both now and in the future.

POSTCURE 1050
PRODUCTIVITY ADVANTAGES
• 5 times faster production cure times vs. competing systems
• 5 times higher throughput vs. competing systems (daily cure cycles)
• Optimized and programmable pre-set cycles
• Strongest light output (25 mW/cm2)
• Built-in heating (up to 80°C)
• Built-in drying (optional)
• High powered LED light source
• No need for mid-cure part flip
• Highest batch-to-batch consistency
Technical Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>PostCure 1050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Part Extents / Chamber Size (W X D X H)</td>
<td>1050 x 800 x 625 mm</td>
</tr>
<tr>
<td>Optimized Consistent Curing Volume (W X D X H)</td>
<td>850 x 750 x 550 mm</td>
</tr>
<tr>
<td>Illumination Pattern</td>
<td>36 UV Light Modules (each containing 18 LEDs) distributed on all 6 internal surfaces for maximum uniformity. No need to flip parts</td>
</tr>
<tr>
<td>Light Output</td>
<td>Up to 1000 Watts total UV power evenly distributed within consistent curing volume</td>
</tr>
<tr>
<td>Light Wavelengths</td>
<td>350 – 450 nm range provided by 3 LED types centered around 365, 395, and 425 nm</td>
</tr>
<tr>
<td>Heat Output</td>
<td>Up to 3000 Watts total convective heating power fully adjustable and controlled up to 80°C for Figure 4 and AMX range of 3D Systems SLA materials</td>
</tr>
<tr>
<td>Active Cooling</td>
<td>Active cooling keeps sensitive parts within 5°C of ambient temperature</td>
</tr>
<tr>
<td>Part Drying</td>
<td>Optional part drying cycle to remove residual solvent prior to curing</td>
</tr>
<tr>
<td>Throughput</td>
<td>3-10X more parts cured per hour depending on application</td>
</tr>
<tr>
<td>Curing Times</td>
<td>Material-dependent. 15 – 120 minutes</td>
</tr>
<tr>
<td>Size Crated</td>
<td>1575 x 1500 x 2057 mm</td>
</tr>
<tr>
<td>Size Uncrated</td>
<td>1218 x 1270 x 1760 mm</td>
</tr>
<tr>
<td>Weight Crated</td>
<td>454 kg (1,000 lbs)</td>
</tr>
<tr>
<td>Weight Uncrated</td>
<td>299 kg (660 lbs)</td>
</tr>
<tr>
<td>Electrical Requirements</td>
<td>200-240VAC, 1-Ph, 50/60Hz, 24A</td>
</tr>
<tr>
<td>Heating Range</td>
<td>20-80°C</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>13-30°C</td>
</tr>
<tr>
<td>Max Part Weight</td>
<td>86 kg (190 lbs)</td>
</tr>
<tr>
<td>Adjustability</td>
<td>User-adjustable by time, temperature, and illumination intensity</td>
</tr>
<tr>
<td>Materials Compatibility</td>
<td>3D Systems optimized recipes for all SLA and Figure 4 materials. Compatible with most resin materials.</td>
</tr>
</tbody>
</table>
Production-Grade Photopolymer Resin Materials

Long-Term Mechanical Performance and Stability
3D Systems’ range of production-grade stereolithography resin materials utilizes patented chemistry to deliver long-term mechanical performance and stability in UV and humid environments.

Tested for up to 8 years of indoor and 1.5 years of outdoor mechanical performance per ASTM methods, these materials deliver significantly improved longevity and stability compared to standard 3D printed photopolymers.

3D Systems SLA printed parts exhibit surface quality comparable to injection molded plastics and similar stress/strain toughness performance to standard thermoplastics. They also feature isotropic mechanical properties, enabling greater part performance at any build orientation compared to alternative additive technologies, such as filament deposition or powder binding.

Production-Grade Materials Spotlight

ACCURA® AMX RIGID BLACK
Rigid, tough, production-grade material for high mechanical loads and structural parts. Features long-term stability of mechanical properties together with exceptional surface finish.
Ideal for industries such as automotive, consumer goods, and manufacturing services requiring large end-use parts, manufacturing aids, and functional prototypes.

ACCURA® AMX DURABLE NATURAL
The industry’s toughest production-grade SLA material, with a unique combination of impact resistance, tear-strength, and elongation at break. Ideal for mandrel tooling of composites.
Features long-term stability of mechanical properties for repeatable mechanical loads and structural parts used in motorsports, aerospace, consumer goods, and manufacturing services.
Applications and Materials

Prototyping & Production
- Fit, form and functional prototypes
- End-use production parts
- Aesthetic concept & showroom models
- PIV wind tunnel testing models
- Automotive body exterior, paneling, under-hood, powertrain and interior cabin parts
- Air and fluid handling tubes, vents, connectors and valves
- High clarity, transparent containers, lenses and lighting covers

Manufacturing Aids
- Lightweight investment casting patterns for large metal parts
- Mandrel tooling
- Molds and dies
- Custom assembly jigs and fixtures
- Cast urethane/vacuum
- Casting master patterns

Biocompatible
- Surgical tools, guides and appliances
- Medical education and presentation models
- Biocompatible medical and dental parts
- Fluid and gas test-flow equipment

SLA 750 3D printers are designed to use 3D Systems’ extensive portfolio of SLA materials featuring a wide range of properties such as rigid, tough, high temperature, and clear, as well as specially formulated materials for biocompatible medical applications and sacrificial investment casting patterns.

Rigid
Similar aesthetics and properties to injection-molded ABS.

Tough & Durable
Look and feel of polypropylene.

Clear
Including the industry’s highest clarity material for polycarbonate-like parts.

Castable
Expendable resins specifically formulated for QuickCast® sacrificial patterns for investment casting.

High Temperature
Heat deflection temperatures up to over 215°C (419°F) offering exceptional performance under extreme conditions.

Specialty Materials
Including options for jewelry-specific casting and dental models’ production.
All-In-One Software for Plastic Printing

3D Sprint

An all-in-one software to prepare, optimize and print 3D CAD data. 3D Sprint delivers all the tools you need to quickly and efficiently go from design to high quality, true-to-CAD printed parts without needing additional third party software.

Designed especially for the needs of SLA power-users, 3D Sprint facilitates file preparation with native CAD import and advanced mesh repair tools, increases productivity with auto placement, enhances manufacturing efficiency with finely tuned supports, and reduces the need for additional software.

• **Print True-to-CAD Parts**
 Smart geometry processing and powerful slicing technology eliminate geometry processing artifacts.

• **Streamline Time to Finished Parts**
 An extensive automated toolset facilitates the entire 3D printing process, saving material and post-processing time without compromising on part quality.

• **Increase Productivity with Optimized Data Management**
 Accurately estimate print time and optimize material levels and usage both before and during the print operation.
From CAD to Factory Floor Integration, Management and Control

Oqton: Intelligent Manufacturing OS

Oqton automates the end-to-end additive workflow across and beyond the production floor. Oqton allows you to upload prepared jobs or use the platform’s integrated build preparation tools. Schedule and track production orders, and connect your machines to enable full traceability and valuable data insights.

Oqton’s Manufacturing OS allows you to schedule all your production and post-production processes in a smart and efficient way. Powered by artificial intelligence, the Oqton Manufacturing OS helps you manage all your machines, orders, and production materials for efficient machine utilization.

Leverage the Industrial Internet of Things to connect all your factory floor equipment. Monitor your machines and processes remotely. Use process-based alerts to bring you piece of mind and easily generate automated reports and insightful live dashboards.

OQTON: ADVANTAGES FOR CONNECTED AM PRODUCTION

- Open and extendable cloud-based platform
- Flexible on-premise and private cloud deployment options
- Infrastructure agnostic
- Tightly connects manufacturing software and hardware
- Artificial intelligence to capture production knowledge
- Engineering automation
- Digital thread enabling full visibility and traceability

Cost-effective, batch volume production of repeatable, end-use plastic parts

AI-based seamless integration of additive manufacturing with all factory floor equipment
Advance Production Efficiency with 3D Systems’ Additive Manufacturing Solutions

3D Systems delivers a breakthrough in additive manufacturing productivity, speed, reliability, and automation for SLA 3D printing. A full solution comprised of the SLA 750 family of large-format 3D printing systems, advanced production-grade photopolymer materials, the PostCure 1050 post-processing system, and the Oqton cloud-based, end-to-end manufacturing operating system.

CONTACT US