-
SolidSurfacer
-
The SolidSurfacer option includes high-level surface and solids modeling capabilities and advanced functionality for machining surfaces and solids. Complex surface and solid functions are made easy with the intuitive GibbsCAM graphical user interface. Use the Advanced 3D with High-Speed Machining component of SolidSurfacer to create a toolpath that is ideal for hard-metal cutting and high-speed machining for smooth surface finishes. Use SolidSurfacer to address the demanding requirements of modeling and machining complex mold, tool, and die.
-
Extended Surface Modeling Capabilities
Though more and more parts files are provided in solid model format, surfaces still play a key part in their definition, and surface modeling for manufacturing is still a very important capability. SolidSurfacer provides extended surface modeling capabilities to handle surface creation or modification. And its powerful surface modeling functionality is easy to use.
Advanced 3D with High-Speed Machining
Advanced 3D with High-Speed Machining (HSM) expands the 3D surface and solid body machining of SolidSurfacer in many ways:
- New types of finishing processes
- Support for 3D material only toolpaths
- Enhanced entry/exit control
- Directly machining faceted bodies like imported STL files
- Automatic core/cavity detection for inside-out or outside-in determination
- Operation splitting for tool wear and for optimal length out of the holder
- Automatic filleting of a surface to avoid sharp concave corners
- Support for batch toolpath generation
Draft
Often parts have vertical walls that make them difficult to remove from molds without sliders. With SolidSurfacer, you can apply an amount of draft slightly angling vertical walls.
Automatic Parting Line Generation
You need to separate mold halves at the extents of the part to ensure that the part can be removed readily. Manually determining where the parting line should be can be a very tedious process. With SolidSurfacer, you can generate the correct parting line automatically and then use it to divide the mold halves easily.
Extract/Heal Features (For Core/Cavity or Electrodes)
Often parts include minor features that get in the way when generating toolpaths. You can suppress these features with the SolidSurfacer extract/heal feature capability, which removes the feature’s geometry and heals the surrounding area. You can use the solid, which is generated from the suppressed feature, to create cores or electrodes.
Multiple Offsets
You must consider different types of surfaces when machining: the surface that is actually being machined, the part surfaces not being machined, and any surfaces associated with fixtures. With SolidSurfacer, you can specify the offset, or how closely the tool comes, for each of these surface types. So, you’re in complete control when generating toolpaths.
3-Axis Multi-Surface Machining
Today’s parts include a variety of forms and surfaces. Applying toolpaths across multiple surfaces or over an entire solid is a key machining capability, in addition to pocketing and profiling. With SolidSurfacer, you can create gouge-free, 3-axis toolpaths easily using a variety of machining styles like lace-cut and zig-zag. You have complete control over cut parameters like direction, orientation, step-over amount, and depth. With SolidSurfacer, you can machine multiple surfaces quickly and easily.
3D Projection Machining
Sometimes you want to have direct control of the toolpath over multiple surfaces. You generate the toolpath you want and then you project it onto the surfaces to be machined. The source for the toolpath geometry can be just about anything, including text. SolidSurfacer provides a powerful capability that allows you to project geometry onto surfaces to generate final toolpath geometry.
-
-
Solids Import
-
The Solids Import option provides entry-level support to machine solid models. Solid models can be read, viewed, and manipulated. You can select and extract geometry for machining. With Solids Import, you can import a solid model, view it, and extract geometry from selected edges, which you can then machine. This option is ideal if you machine wireframe geometry and want to expand your capabilities to support rudimentary solids machining.
-
Entry-Level Solids Support
Solid models are more and more common in manufacturing as a source data type. Solid models provide more accurate geometry than other formats, which reduces errors. GibbsCAM solids-based options are built on the Solids Import option. If you are ready to step up to solids, Solids Import provides basic support to machine solid models in an easy-to-use environment so that you can ease into solids.
Native Parasolid Support
Solid models are available in a wide variety of formats, from industry standards like STEP, to CAD-system-specific formats, to kernel modeler formats. GibbsCAM Solids Import supports Parasolid files, a kernel modeler format widely used by numerous popular CAD systems like Siemens Solid Edge® and SOLIDWORKS®. Sharing a common modeling kernel ensures that you can read CAD models in Parasolid format directly into GibbsCAM and then view and manipulate them. Build your solids-based technology on a solid foundation.
Solid Viewing
Solid models provide a more complete representation than wireframe or surface models, which allows them to render more accurately. You can choose from a variety of solids display modes. You can orient your view dynamically while also providing quick access to standard views with the innovative GibbsCAM virtual trackball. Get a solid view of what you are machining.
Extracting Geometry from Solids
Solid models contain both wireframe and surface geometry for the richest amount of geometric data. And solid models ensure accurate edge geometry between surfaces. With GibbsCAM Solids Import, you can extract a solid model’s wireframe geometry, which corresponds to the edges of a part, and directly machine from it. Or, if necessary, you can modify the extracted geometry before you machine it. Take advantage of solid model accuracy.
Slicing Solids
Sometimes, where you want to machine is not necessarily defined by an existing edge. With GibbsCAM Solids Import, you can generate wireframe geometry by cutting the solid with a plane. You can then machine or further manipulate the resulting geometry. Get solid capability built on solids technology.
Foundation for Solids-Based Options
Solids introduce a whole new range of capabilities from data exchange, to visualization, to machining, to verification. With GibbsCAM Solids Import, you can choose to add additional capabilities seamlessly, which further expands your solids-based technology. Read in CAD data in other solid formats like ACIS files, CATIA V4 or V5, Pro/ENGINEER, and STEP AP203 or AP214. Grow at your own pace while you protect your investment.
-
-
2.5D Solids
-
GibbsCAM 2.5D Solids includes significant surface and solid modeling capabilities and the functionality to machine surfaces and solids directly. Create, import, and modify solid models and then generate programs to machine them. Use specialized tools to import, repair, and automatically solidify surface data. Increase your efficiency and productivity by creating CNC programs faster and more easily.
-
Powerful Solid Modeling
Whether you import solid models from a CAD system, create your own from scratch, or modify an imported solid to create a manufacturable version, GibbsCAM 2.5D Solids provides a full range of solid modeling functionality with advanced functionality like history trees to support you. And its industry-leading ease-of-use makes working with solids straightforward and easy-to-understand. With its powerful solid modeling tools, you can take full advantage of solid modeling technology.
Importing and Repairing Surface Models
Even with the transition to solids, CAD systems still generate surface models that must be imported and machined. With GibbsCAM 2.5D Solids, you can read in surface models and then repair any problems that you encounter with a broad range of surface modeling tools. And you can create your own surfaces for machining. If you still work with surface models, GibbsCAM 2.5D Solids can still cut your jobs and provide a great migration path to solids-based machining.
Automatic Solidification
With GibbsCAM 2.5D Solids, you do not have to start with solid models to take advantage of solids-based machining. Automatically stitch surface models, whether imported or created, together to create solid models that can then be further modified with the GibbsCAM solid modeling tools or machined directly. Access the tools you need to transition from surface-based to solids-based CAM.
Directly Machining 2.5D Solids
Not only do solid models provide considerable advantages during design, but they also offer many advantages during machining. GibbsCAM developed machining functionalities so that users can machine solids directly and take advantage of the additional information available in solids, which results in improved performance, reliability, and efficiency.
Solids Positioning Tools
Since solid models are the main building block within GibbsCAM 2.5D Solids, it supplies powerful positioning tools so you can position and orient solids quickly, easily, and precisely. Not only are these tools extremely useful when modeling a single part made up of multiple pieces, but they can streamline setting up part models in fixturing significantly. Focus on how things need to be placed, not how to calculate the rotations and transformations to get them there.
Profiler
Identifying the manufacturable features in a part is a common starting point for a program. GibbsCAM 2.5D Solids includes the Profiler, an innovative interface that interactively defines features like bosses, slots, and pockets. Unlike automatic feature recognition, the Profiler gives you complete control over the geometric elements that are included in a feature. The Profiler can also derive geometry interactively for machining. Its robust, feature-based machining provides you with powerful programming tools.
Automatic Feature Recognition (Holes)
Hole-making occupies close to 80 percent of machining time with most production machining jobs. Holes also represent a significant amount of programming time in production parts. Fortunately, holes are also fairly well-behaved features in solid models. GibbsCAM 2.5D Solids provides an automatic feature recognition (AFR) capability that identifies holes along with their position and orientation and also determines various hole aspects (chamfer, counter-sink/bore, bottom condition) based on the hole's geometry. Leverage the AFR capability to improve your hole-making efficiency and quality.
Hole Manager
Streamline hole-making productivity and improve overall quality. With hole-making occupying close to 80 percent of production parts’ machining time, how you identify, group, and program holes are extremely important. The Hole Manager is a front-end to processing hole features that displays the parameters of holes and enables you to group them for processing. The Hole AFR is integrated with the Hole Manager so that you can identify hole features to be directly loaded into it automatically. The Hole Wizard is similarly integrated so that hole information is passed directly for automatic tooling and toolpath generation.
-
-
VoluMill
VoluMill™ for GibbsCAM is an ultra-high performance toolpath (UHPT) option that uses a continuous, high-speed toolpath for an optimized CNC program. These powerful, high-speed, high-material-removal-rate capabilities can help you create the fastest, most efficient toolpath for a wide variety of milling part types in your shop. The process automatically takes into account the best option for milling pockets including the tool speed plunging into the material and material removal rates. Variation in tool load is smoothed, which allows the machine to use much higher speeds and feeds.
- Improves productivity.
- Reduces cycle time.
- Extends tool life.
- Provides up to 100 percent stepover with no uncut material.
- Safely doubles machine output.
- Reduces energy costs by up to 60 percent.
- Fully integrates into the GibbsCAM with the same look and feel.
- Requires zero post-processor changes.
- Automatically adjusts feed rate.
The GibbsCAM VoluMill Wireframe option is included with each new GibbsCAM milling license and GibbsCAM milling licenses covered by software maintenance.
-
Machine Simulation
An extension to the GibbsCAM integrated Cut Part Rendering visualization/verification capability, Machine Simulation uses animated machine tool models to identify any program errors before they cause costly mistakes on the shop floor.